The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
نویسندگان
چکیده
The reparameterization trick enables optimizing large scale stochastic computation graphs via gradient descent. The essence of the trick is to refactor each stochastic node into a differentiable function of its parameters and a random variable with fixed distribution. After refactoring, the gradients of the loss propagated by the chain rule through the graph are low variance unbiased estimators of the gradients of the expected loss. While many continuous random variables have such reparameterizations, discrete random variables lack useful reparameterizations due to the discontinuous nature of discrete states. In this work we introduce CONCRETE random variables—CONtinuous relaxations of disCRETE random variables. The Concrete distribution is a new family of distributions with closed form densities and a simple reparameterization. Whenever a discrete stochastic node of a computation graph can be refactored into a one-hot bit representation that is treated continuously, Concrete stochastic nodes can be used with automatic differentiation to produce low-variance biased gradients of objectives (including objectives that depend on the log-probability of latent stochastic nodes) on the corresponding discrete graph. We demonstrate the effectiveness of Concrete relaxations on density estimation and structured prediction tasks using neural networks.
منابع مشابه
DISCRETE SIZE AND DISCRETE-CONTINUOUS CONFIGURATION OPTIMIZATION METHODS FOR TRUSS STRUCTURES USING THE HARMONY SEARCH ALGORITHM
Many methods have been developed for structural size and configuration optimization in which cross-sectional areas are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. This paper proposes two efficient structural optimization methods based on the harmony search (HS) heuristic algorithm that treat both discret...
متن کاملOrdered Random Variables from Discontinuous Distributions
In the absolutely continuous case, order statistics, record values and several other models of ordered random variables can be viewed as special cases of generalized order statistics, which enables a unified treatment of their theory. This paper deals with discontinuous generalized order statistics, continuing on the recent work of Tran (2006). Specifically, we show that in general neither re...
متن کاملOn discrete a-unimodal and a-monotone distributions
Unimodality is one of the building structures of distributions that like skewness, kurtosis and symmetry is visible in the shape of a function. Comparing two different distributions, can be a very difficult task. But if both the distributions are of the same types, for example both are unimodal, for comparison we may just compare the modes, dispersions and skewness. So, the concept of unimodali...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملNotes on Continuous Random Variables
Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes them from discrete random variables, which can take on only a sequence of values, usually integers. Typically random variables that represent, for example, time or distance will be continuous rather than discrete. Just as we descri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1611.00712 شماره
صفحات -
تاریخ انتشار 2016